Vektor : Pengertian, Materi, Rumus dan Contoh Soal

Vektor : Pengertian, Materi, Rumus dan Contoh Soal – Apakah yang di maksud dengan Vektor dalam operasi matematika ?Pada kesempatan kali ini Seputarpengetahuan.co.id akan membahas Vektor dan hal-hal lain tentangnya. Mari kita simak pembahasannya pada artikel di bawah ini untuk lebih dapat memahaminya.

Vektor : Pengertian, Materi, Rumus dan Contoh Soal


Vektor merupakan sebuah besaran yang memiliki arah. Vektor digambarkan sebagai panah dengan yang menunjukan arah vektor dan panjang garisnya disebut besar vektor. Dalam penulisannya, jika vektor berawal dari titik A dan berakhir di titik B bisa ditulis dengan sebuah huruf kecil yang diatasnya ada tanda garis/ panah seperti \vec{v}

atau \bar{v} atau juga:

\vec{AB}

Pada tahun 1827 Mobius mempublikasikan Der Barycentrische Calcul, sebuah buku geometri yang mengkaji transformasi garis dan irisan kerucut. Fitur baru dalam hasil karya ini adalah pengenalan koordinat barycentric. Diberikan sembarang segitiga ABC maka jika garis berat a, b, dan c berturut-turut dilukis pada A, B, dan C maka dapat ditentukan sebuah titik P, yaitu titik berat segitiga.

Mobius memperlihatkan bahwa setiap titik P pada bidang datar ditentukan oleh koordinat homogen [a,b,c]. Garis – garis berat yang diperlukan diletakkan pada A,B, dan C untuk menentukan titik berat P. Yang terpenting disini adalah pandangan Mobius tentang besaran berarah, sebuah pemunculan awal mengenai konsep vektor.

Vektor adalah besaran yang mempunyai besar/nilai dan arah. Secara geometris vektor digambarkan sebagai ruas garis berarah, dengan panjang ruas garis menyatakan besar vektor dan arah ruas garis menyatakan arah vektor .

Dalam matematika vektor digambarkan dalam bentuk garis lurus yang mempunyai panjang dan arah.

Penulisan nama vektor :

  1. dengan menggunakan huruf kapital harus menggunakan dua huruf, sebagai contoh vektor AB
  2. adalah vektor yang panjangnya sama dengan panjang ruas garis AB dan arahnya dari A ke B.
  3. sedangkan dengan huruf kecil hanya satu huruf, sebagai contoh a̅

Sebagai Contoh

Misalkan vektor \bar{v} merupakan vektor yang berawal dari titik A(x_1,y_1) menuju titik B(x_2,y_2) dapat digambarkan koordinat cartesius dibawah. Panjang garis sejajar sumbu x adalah v_1 = x_2 - x_1 dan panjang garis sejajar sumbu y adalah v_2 = y_2 - y_1 merupakan komponen-komponen vektor \bar{v}.

pengertian vektor

Komponen vektor \bar{v} dapat ditulis untuk menyatakan vektor secara aljabar yaitu:

Baca Juga:  Rumus Simpangan Kuartil : Pengertian, Jenis dan Contoh Soal

\vec{v} = \left(\begin{array}{r} v_1\\ v_2\end{array}\right) = \left(\begin{array}{r} x_2-x_1\\ y_2-y_1\end{array}\right) atau \vec{v} = (v_1,v_2)


Jenis-jenis Vektor

Ada beberapa jenis vektor khusus yaitu:

  • Vektor Posisi
    Suatu vektor yang posisi titik awalnya di titik 0 (0,0) dan titik ujungnya di A (a_1,a_2)
  • Vektor Nol
    Suatu vektor yang panjangnya nol dan dinotasikan \bar{0}. Vektor nol tidak memiliki arah vektor yang jelas.
  • Vektor satuan
    Suatu vektor yang panjangnya satu satuan. Vektor satuan dari \vec{v} = \left(\begin{array}{r} v_1\\ v_2\end{array}\right) adalah:
    \bar{U_v} = \frac{\bar{v}}{\mid\bar{v}\mid} = \frac{1}{\mid\bar{v}\mid}\left(\begin{array}{r} v_1\\ v_2\end{array}\right)
  • Vektor basis
    Vektor basis merupakan vektor satuan yang saling tegak lurus. Dalam vektor ruang dua dimensi (R^2) memiliki dua vektor basis yaitu \bar{l} = (1,0)dan \bar{j} = (0,1). Sedangkan dalam tiga dimensi (R^3) memiliki tiga vektor basis yaitu \bar{I} = (1, 0, 0), \bar{J} = (0, 1, 0), dan \bar{K} = (0, 0,1).

Vektor di R^2

Panjang segmen garis yang menyatakan vektor \bar{v} atau dinotasikan sebagai \mid\bar{v}\mid Panjang vektor sebagai:

vektor di R2

Panjang vektor tersebut dapat dikaitkan dengan sudut \theta yang dibentuk oleh vektor dan sumbu x. positif.

panjang dan rumus vektor

Vektor dapat disajikan sebagai kombinasi linier dari vektor basis \bar{l} = \binom{1}{0} dan \bar{J} = \binom{0}{1} berikut:

\bar{v} =\left(\begin{array}{r} v_1\\ v_2\end{array}\right) = v_1\left(\begin{array}{r} 1 \\ 0 \end{array}\right) + v_2\left(\begin{array}{r} 0\\ 1\end{array}\right)

\bar{v} =v_1 \bar{i} + v_2\bar{j}

panjang vektor di r2


Operasi Vektor di R^2


Penjumlahan dan pengurangan vektor di R^2

Dua vektor atau lebih dapat dijumlahkan dan hasilnya disebut resultan. Penjumlahan vektor secara aljabar dapat dilakukan dengan cara menjumlahkan komponen yang seletak. Jika \vec{a} = \left(\begin{array}{r} a_1\\ a_2\end{array}\right) dan \vec{b} = \left(\begin{array}{r} b_1\\ b_2\end{array}\right) maka:

\vec{a} + \vec{b} = \left(\begin{array}{r} a_1+b_1\\ a_2+b_2\end{array}\right)

Penjumlahan secara grafis dapat dilihat pada gambar dibawah:

penjumlahan dan pengurangan vektor

Dalam pengurangan vektor, berlaku sama dengan penjumlahan yaitu:

\bar{a} - \bar{b} = \left(\begin{array}{r} a_1-b_1\\ a_2-b_2\end{array}\right)

Sifat-sifat dalam penjumlahan vektor sebagai berikut:

  • \bar{a} + \bar{b} = \bar{b} + \bar{a}
  • \bar{a} + (\bar{b}+\bar{c}) = (\bar{a} + \bar{b}) + \bar{c}

Perkalian vektor di R^2 dengan skalar

Suatu vektor dapat dikalikan dengan suatu skalar (bilangan real) dan akan menghasilkan suatu vektor baru. Jika \bar{v} adalah vektor dan k adalah skalar. Maka perkalian vektor:

k.\bar{v}

Dengan ketentuan:

  • Jika k > 0, maka vektor k.\bar{v} searah dengan vektor \bar{v}
  • Jika k < 0, maka vektor k.\bar{v} berlawanan arah dengan vektor \bar{v}
  • Jika k = 0, maka vektor k.\bar{v} adalah vektor identitas \bar{o} = ^0_0

Secara grafis perkalian ini dapat merubah panjang vektor dan dapat dilihat pada tabel dibawah:

perkalian vektor dengan skalar

Secara aljabar perkalian vektor \bar{v} dengan skalar k dapat dirumuskan:

k.\bar{v} = \left(\begin{array}{r} k.v_1\\ k.v_2\end{array}\right)

Perkalian Skalar Dua Vektor di R^2

Perkalian skalar dua vektor disebut juga sebagai hasil kali titik dua vektor dan ditulis sebagai:

\bar{a}.\bar{b} (dibaca : a dot b)

Perkalaian skalar vektor \bar{a} dan \bar{b} dilakukan dengan mengalikan panjang vektor \bar{a} dan panjang vektor \bar{b} dengan cosinus \theta. Sudut \theta yang merupakan sudut antara vektor \bar{a}dan vektor \bar{b}.

Sehingga:

\bar{a} \cdot \bar{b} = \mid\bar{a}\mid\mid\bar{b}\mid cos\theta

Dimana:

perkalian skalar dua vektor

Perhatikan bahwa:

  • Hasil kali titik dua vektor menghasilkan suatu skalar
  • \bar{a}.\bar{a} = (\bar{a}^2)
  • \bar{a}.(\bar{b}+ \bar{c}) = (\bar{a} . \bar{a}) + (\bar{a} . (\bar{c})

Vektor di R^3

Vektor yang berada pada ruang tiga dimensi (x, y, z).jarak antara dua titik vektor dalam R^3 dapat diketahui dengan pengembangan rumus phytagoras. Jika titik A(x_1,y_1,z_1) dan titik B(x_2,y_2,z_2) maka jarak AB adalah:

AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 b+ (z_2 - z_1)^2}

Atau jika \bar{v} = \left(\begin{array}{r} v_1 \\ v_2 \\ v_3 \end{array}\right), maka

\mid\bar{v}\mid = \sqrt{(v_1)^2 + (v_2)^2 + (v_3)^2}

Vektor \bar{AB} dapat dinyatakan dalam dua bentuk, yaitu dalam kolom \bar{AB} = \left(\begin{array}{r} b_1 - a_1\\ b_2 - a_2\\ b_3 - a_3\end{array}\right) atau dalam baris  \bar{AB} = (b_1 - a_1,b_2 - a_2,b_3 - a_3). Vektor juga dapat disajikan sebagai kombinasi linier dari vektor basis \bar{l}(1,0,0) dan \bar{J}(0,1,0) dan \bar{K}(0,0,1) berikut:

Baca Juga:  Transformasi Geometri : Pengertian, Jenis, Rumus dan Contoh Soal

\bar{v} = \left(\begin{array}{r} v_1\\ v_2\\ v_3\end{array}\right) = v_1\left(\begin{array}{r} 1\\ 0\\ 0\end{array}\right) + v_2\left(\begin{array}{r} 0\\ 1\\ 0\end{array}\right) + v_3\left(\begin{array}{r} 0\\ 0\\ 1\end{array}\right)

\bar{v} = v_1\bar{I} + v_2\bar{J} + v_3\bar{K}

vektor di R3


Operasi Vektor di R^3

Operasi vektor di R^3 secara umum, memiliki konsep yang sama dengan operasi vektor di R^2 dalam penjumlahan, pengurangan, maupun perkalian.

Penjumlahan dan pengurangan vektor di R^3

Penjumlahan dan pengurangan vektor di R^3 sama dengan vektor di R^2 yaitu:

\bar{a} + \bar{b} = \left(\begin{array}{r} a_1\\ a_2\\ a_3\end{array}\right) + \left(\begin{array}{r} b_1\\ b_2\\ b_3\end{array}\right) = \left(\begin{array}{r} a_1+b_1\\ a_2+b_2\\ a_3+b_3\end{array}\right)

Dan

\bar{a} - \bar{b} = \left(\begin{array}{r} a_1\\ a_2\\ a_3\end{array}\right) - \left(\begin{array}{r} b_1\\ b_2\\ b_3\end{array}\right) = \left(\begin{array}{r} a_1-b_1\\ a_2-b_2\\ a_3-b_3\end{array}\right)

Perkalian vektor di R^3 dengan skalar

Jika \bar{v} adalah vektor dan k adalah skalar. Maka perkalian vektor:

k.\bar{v} = \left(\begin{array}{r} k.v_1\\ k.v_2\\ k.v_3\end{array}\right)

Hasil kali skalar dua vektor di R^3

Selain rumus di R^3, ada rumus lain dalam hasil kali skalar dua vektor. Jika \bar{a} = a\bar{I} + a_2\bar{J} + a_3\bar{K} dan \bar{b} = b_1\bar{i} + b_2\bar{j} + b_3\bar{k} maka \bar{a}.\bar{b} adalah:

\bar{a}.\bar{b} = (a_1b_1) + (a_2b_2) + (a_3b_3)


Proyeksi Orthogonal vektor

Jika vektor \bar{a} diproyeksikan ke vektor bar{b} dan diberi nama \bar{c} seperti gambar dibawah:

proyeksi orthogonal vektor

Diketahui:

\bar{a}.\bar{b} = \mid\bar{a}\mid \mid \bar{b} \mid cos\theta \overset{maka}{\rightarrow} cos\theta = \frac{\bar{a}.\bar{b}}{\mid\bar{a}\mid\mid\bar{b}\mid}

Sehingga:

\mid\bar{c}\mid = \mid\bar{a}\mid\mid cos\theta\mid atau \mid\bar{c}\mid = \mid\frac{\bar{a}.\bar{b}}{\mid\bar{b}\mid}\mid

Untuk mendapat vektornya:

\bar{c} = \mid\frac{\bar{a}.\bar{b}}{\mid \bar{b} \mid} \mid \bar{b}

Vektor : Pengertian, Materi, Rumus dan Contoh Soal

Contoh Soal dan Pembahasan

Soal 1

Diketahui titik A(2,4,6), titik B(6,6,2), dan titik C(p,q,-6). Jika titik A, B, dan C segaris maka tentukan nilai p+q.

Pembahasan 1:

Jika titik-titik A, B, dan C segaris maka vektor \bar{AB} dan vektor \bar{AC} bisa searah atau berlainan arah. Sehingga akan ada bilangan m yang merupakan sebuah kelipatan dan membentuk persamaan

  • m.\bar{AB} = \bar{AC}

Jika B berada diantara titik A dan C, diperoleh:

  • \bar{AB} + \bar{BC} = \bar{AC}

sehingga:

\bar{AB} = \left(\begin{array}{r} 6-2\\ 6-4\\ 2-6\end{array}\right) = \left(\begin{array}{r} 4\\ 2\\ -4\end{array}\right)

\bar{AC} = \left(\begin{array}{r} p-2\\ q-4\\ -6-6\end{array}\right) = \left(\begin{array}{r} p-2\\ q-4\\ -12\end{array}\right)

Maka kelipatan m dalam persamaan:

m.\bar{AB} = \bar{AC}

m.\left(\begin{array}{r} 4\\ 2\\ -4\end{array}\right) = \left(\begin{array}{r} p-2\\ q-4\\ -12\end{array} \right)

-4.m = (-12) \rightarrow m = 3

Diperoleh:

  • 2.m = (q - 4) \rightarrow 6 = (q - 4)
    q = 10
  • 4.m = (p - 2) \rightarrow 12 (p - 2)
    p = 14

disimpulkan:

p+q=10+14=24

Soal 2

Diketahui ada titik A(2,4,6), titik B(6,6,2), dan titik C(p,q,-6). Apabila titik A, B, dan C segaris maka tentukan nilai p + q !

Penyelesaian :

Jika titik – titik A, B, dan C segaris maka vektor  dan vektor  bisa juga searah atau berlainan arah. Sehingga akan ada bilangan m yang merupakan sebuah kelipatan dan bisa membentuk persamaan berikut ini :

Jika B berada diantara titik A dan C, maka akan diperoleh :

Sehingga Dapat Diperoleh :

Maka kelipatan m dalam persamaan :

Diperoleh :

Jadi, dapat disimpulkan :

p + q = 10 + 14 = 24

Inilah pembahasan lengkap tentang cara menghitung rumus vekt

Soal 3

Jika diketahui vektor pada titik A dan titik B dan vektor pada titik C yang berada diantara garis Ab seperti gambar dibawah. Tentukan persamaan vektor C.

contoh soal vektor dan pembahasannya

Pembahasan 2:

Dari gambar dapat diketahui bahwa:

  • \bar{AB} + \bar{a} = \bar{b} sehingga \bar{AB} = \bar{b} - \bar{a}
  • \bar{AC} = \frac{m}{m+n}\bar{AB} = \frac{m}{m+n}(\bar{b} - \bar{a})

Sehingga:

\bar{c} = \bar{AC} + \bar{a}

= \frac{m}{m+n} (\bar{b} - \bar{a}) + \bar{a} = \frac{m}{m+n}(\bar{b}) - \frac{m}{m+n}(\bar{a}) + \frac{m+n}{m+n}(\bar{a})

= \frac{m}{m+n}(\bar{b})+\frac{n}{m+n}(\bar{a})

Soal 4

Misalkan vektor \bar{a} = 4\bar{i} + y\bar{j} dan vektor \bar{b}=2\bar{i} + 2\bar{j} + \bar{k}. Jika panjang proyeksi vektor a ̅\bar{a} pada \bar{b} adalah 4. Maka tentukan nilai y.

Pembahasan 3:

Diketahui:

  • \mid\bar{b}\mid = \sqrt{(2)^2 + (2)^2 + (1)^2} = \sqrt{9} = 3
  • \bar{a}.\bar{b} = (4.2) + (2.y) + (0.1) = 8 + 2y

Maka:

\bar{c} = \mid\frac{\bar{a}.\bar{b}}{\mid\bar{b}\mid} \mid \bar{b}\overset{menjadi}{\rightarrow}4 = \mid\frac{8+2y}{3}\mid

12=8+2y

y=2

Demikianlah ulasan dari Seputarpengetahuan.co.id tentang Vektor ,semoga dapat menambah wawasan dan pengetahuan kalian. Terimakasih telah berkunjung dan jangan lupa untuk membaca artikel lainnya