Sistem Persamaan Linear Tiga Variabel : Ciri, Komponen, Metode Penyelesaian dan Contoh Soal

Sistem Persamaan Linear Tiga Variabel : Ciri, Komponen, Metode Penyelesaian dan Contoh Soal –  Apa yang di maksud dengan Sistem persamaan tiga variabel ?Pada kesempatan kali ini Seputarpengetahuan.co.id akan membahasnya dan tentu pula hal-hal yang melingkupinya. Mari kita simak bersama pembahasannya pada artikel di bawah ini untuk lebih dapat memahaminya.

Sistem Persamaan Linear Tiga Variabel : Ciri, Komponen, Metode Penyelesaian dan Contoh Soal


Sistem persamaan tiga variabel atau yang biasa disingkat sebagai SPLTV adalah kumpulan persamaan linear yang memiliki tiga variabel. Persamaan linear ditandai dengan pangkat tertinggi dari variabel dalam persamaan adalah satu. Selain itu, tanda yang menghubungkan persamaan berupa tanda sama dengan.

Dalam ilmu arsitektur, terdapat perhitungan matematika untuk mendirikan bangunan, salah satunya adalah sistem persamaan linear. Sistem persamaan linear bermanfaat untuk menentukan koordinat titik potong. Koordinat yang tepat sangat penting untuk menghasilkan bangunan yang sesuai dengan sketsa. Di artikel kali ini, kita akan membahas sistem persamaan linear tiga variabel (SPLTV).

Sistem Persamaan Linear Tiga Variabel- merupakan bentuk perluasan dari sistem persamaan linear dua variabel (SPLDV). Yang mana, pada sistem persamaan linear tiga variabel terdiri dari tiga persamaan yang masing-masing persamaan memiliki tiga variabel (misal x, y dan z).

Sistem persamaan linear tiga variabel terdiri dari beberapa buah persamaan linear dengan tiga variabel. Bentuk umum dari persamaan linear tiga variabel adalah sebagai berikut.

ax + by + cz = d

a, b, c, dan d merupakan bilangan real, tapi a, b, dan c tidak boleh semuanya 0. Persamaan tersebut memiliki banyak solusi. Salah satu solusi dapat diperoleh dengan mengumpamakan sembarang nilai pada dua variabel untuk menentukan nilai variabel ketiga.


Ciri Ciri Sistem Persamaan Linear Tiga Variabel

Sebuah persamaan disebut sebagai sistem persamaan linear tiga variabel jika persamaan tersebut mempunyai karakteristik seperti berikut ini:

  • Memakai relasi tanda sama dengan (=)
  • Mempunyai tiga variabel
  • Ketiga variabel tersebut mempunyai derajat satu (berpangkat satu)

Komponen Sistem Persamaan Linear Tiga Variabel

Memuat tiga komponen atau unsur yang selalu berhubungan dengan sistem persamaan linear tiga variabel.

Ketiga komponen tersebut yaitu: suku, variabel, koefisien dan konstanta. Berikut ini merupakan penjelasan dari masing-masing komponen SPLTV tersebut.

  • Suku

Suku merupakan sebuah bagian dari suatu bentuk aljabar yang terdiri atas variabel, koefisien dan konstanta. Setiap suku dipisahkan dengan menggunakan tanda baca penjumlahan maupun pengurangan.

Contoh:

6x – y + 4z + 7 = 0, maka suku–suku dari persamaan tersebut yaitu 6x , -y, 4z dan 7.

  • Variabel

Variabel merupakan peubah atau pengganti dari suatu bilangan yang pada umumnya dilambangkan dengan pemakaian huruf seperti x, y dan z.

Contoh:

Yulisa mempunyai 2 buah apel, 5 buah mangga dan 6 buah jeruk. Apabila kita tulis dalam bentuk persamaan maka:

Contoh: apel = x , mangga = y dan jeruk = z, sehingga persamannya yaitu 2x + 5y + 6z.

  • Koefisien

Koefisien merupakan sebuah bilangan yang menyatakan banyaknya suatu jumlah variabel yang sejenis.

Koefisien disebut juga sebagai bilangan yang terdapat di depan variabel, sebab penulisan dari suatu persamaan koefisien berada di depan variabel.

Contoh:

Gilang mempunyai 2 buah apel, 5 buah mangga dan 6 buah jeruk. Apabila kita tuliskan ke dalam bentuk persamaan maka:

Contoh: apel = x , mangga = y dan jeruk = z, sehingga persamannya yaitu 2x + 5y + 6z.

Dari persamaan tersebut, maka dapat diketahui bahwa 2, 5 dan 6 merupakan koefisien di mana 2 merupakan koefisien x , 5 merupakan koefisien y serta 6 merupakan koefisien z.

  • Konstanta

Konstanta merupakan sebuah bilangan yang tidak diikuti dengan variabel, sehingga akan mempunyai nilai yang tetap atau konstan untuk berapa pun nilai variabel atau peubahnya.

Contoh:

2x + 5y + 6z + 7 = 0, dari persamaan tersebut konstantanya yaitu 7. Sebab, 7 nilainya tetap dan tidak terpengaruh dengan berapa pun variabelnya.


Metode Penyelesaian Sistem Persamaan Linear Tiga Variabel

Sebuah nilai (x, y, z) merupakan himpunan penyelesaian sistem persamaan linear tiga variabel jika nilai (x, y, z) memenuhi ketiga persamaan yang ada di dalam SPLTV. Himpunan penyelesaian SPLTV dapat ditentukan dengan dua cara, yaitu metode substitusi dan metode eliminasi.

  • Metode Substitusi

Metode substitusi adalah metode penyelesaian sistem persamaan linear dengan cara menyubstitusikan nilai salah satu variabel dari satu persamaan ke persamaan lain. Metode ini dilakukan sampai diperoleh semua nilai variabel dalam sistem persamaan linear tiga variabel.

Metode substitusi lebih mudah digunakan pada SPLTV yang memuat persamaan berkoefisien 0 atau 1. Berikut adalah langkah-langkah penyelesaian dengan metode substitusi.

  1. Tentukan persamaan yang memiliki bentuk sederhana. Persamaan dengan bentuk sederhana memiliki koefisien 1 atau 0.
  2. Nyatakan salah satu variabel dalam bentuk dua variabel lain. Contohnya, variabel x dinyatakan dalam variabel y atau z.
  3. Substitusikan nilai variabel yang diperoleh pada langkah kedua ke persamaan lain yang ada di SPLTV, sehingga diperoleh sistem persamaan linear dua variabel (SPLDV).
  4. Tentukan penyelesaian SPLDV yang diperoleh pada langkah ketiga.
  5. Tentukan nilai semua variabel yang belum diketahui.

Coba kita lakukan contoh soal berikut. Tentukan himpunan penyelesaian sistem persamaan linear tiga variabel di bawah ini.

x + y + z = -6 … (1)

x – 2y + z = 3 … (2)

-2x + y + z = 9 … (3)

Pertama, kita dapat mengubah persamaan (1) menjadi, z = -x – y – 6 menjadi persamaan (4). Kemudian, kita dapat menyubstitusikan persamaan (4) ke persamaan (2) sebagai berikut.

x – 2y + z = 3

x – 2y + (-x – y – 6) = 3

x – 2y – x – y – 6 = 3

-3y = 9

y = -3

Setelah itu, kita dapat menyubstitusikan persamaan (4) ke persamaan (3) sebagai berikut.

-2x + y + (-x – y – 6) = 9

-2x + y – x – y – 6 = 9

-3x = 15

x = -5

Kita sudah mendapatkan nilai x = -5 dan y = -3. Kita dapat memasukkannya ke persamaan (4) untuk memperoleh nilai z sebagai berikut.

Baca Juga:  Statistika : Pengertian, Ruang Lingkup dan Rumus

z = -x – y – 6

z = -(-5) – (-3) – 6

z = 5 + 3 – 6

z = 2

Jadi, kita mendapat himpunan penyelesaian (x, y, z) = (-5, -3, 2)

  • Metode Eliminasi

Metode eliminasi adalah metode penyelesaian sistem persamaan linear dengan cara menghilangkan salah satu variabel pada dua buah persamaan. Metode ini dilakukan sampai tersisa satu buah variabel.

Metode eliminasi dapat digunakan pada semua sistem persamaan linear tiga variabel. Tapi metode ini memerlukan langkah yang panjang karena tiap langkah hanya dapat menghilangkan satu variabel. Diperlukan minimal 3 kali metode eliminasi untuk menentukan himpunan penyelesaian SPLTV. Metode ini lebih mudah jika digabung dengan metode substitusi.

Langkah-langkah penyelesaian menggunakan metode eliminasi adalah sebagai berikut.

  1. Amati ketiga persamaan pada SPLTV. Jika ada dua persamaan yang nilai koefisiennya sama pada variabel yang sama, kurangkan atau jumlahkan kedua persamaan agar variabel tersebut berkoefisien 0.
  2. Jika tidak ada variabel berkoefisien sama, kalikan kedua persamaan dengan bilangan yang membuat koefisien suatu variabel pada kedua persamaan sama. Kurangkan atau jumlahkan kedua persamaan agar variabel tersebut berkoefisien 0.
  3. Ulangi langkah 2 untuk pasangan persamaan lain. Variabel yang dihilangkan pada langkah ini harus sama dengan variabel yang dihilangkan pada langkah 2.
  4. Setelah diperoleh dua persamaan baru pada langkah sebelumnya, tentukan himpunan penyelesaian kedua persamaan menggunakan metode penyelesaian sistem persamaan linear dua variabel (SPLDV).
  5. Substitusikan nilai dua variabel yang diperoleh pada langkah ke-4 pada salah satu persamaan SPLTV sehingga diperoleh nilai variabel ketiga.

Kita akan coba menggunakan metode eliminasi pada soal berikut. Tentukan himpunan penyelesaian SPLTV-nya!

2x + 3y – z = 20 … (1)

3x + 2y + z = 20 … (2)

X + 4y + 2z = 15 … (3)

SPLTV dapat ditentukan himpunan penyelesaiannya dengan mengeliminasi variabel z. Pertama, jumlahkan persamaan (1) dan (2) sehingga diperoleh:

2x + 3y – z = 20

3x + 2y + z = 20 +

5x + 5y       = 40

x + y           = 8 … (4)

Kemudian, kalikan 2 pada persamaan (2) dan kalikan 1 pada persamaan (1) sehingga diperoleh:

3x + 2y + z = 20  |x2         6x + 4y + 2z = 40

x + 4y + 2z = 15  |x1           x + 4y + 2z = 15

5x              = 25

x                = 5

Setelah mengetahui nilai x, substitusikan ke persamaan (4) sebagai berikut.

x + y = 8

5 + y = 8

y = 3

Substitusikan nilai x dan y pada persamaan (2) sebagai berikut.

3x + 2y + z = 20

3(5) + 2 (3) + z = 20

15 + 6 + z = 20

z = -1

Sehingga diperoleh himpunan penyelesaian SPLTV (x, y, z) adalah (5, 3, -1).

  • Metode Gabungan atau Campuran

Penyelesaian untuk sistem persamaan linear dengan memakai metode gabungan atau campuran adalah cara penyelesaian dengan cara menggabungkan dua metode sekaligus.

Metode yang dimaksud adalah metode eliminasi dan metode subtitusi.

Metode ini dapat digunakan dengan menggunakan metode subtitusi terlebih dahulu atau dengan eliminasi terlebih dahulu.

Dan kali ini, kita akan mencoba metode gabungan atau campuran dengan 2 teknik yakni:

Mengeliminasi terlebih dahulu baru selanjutnya memakai metode subtitusi.
Mensubtitusi terlebih dahulu baru lalu memakai metode eliminasi.

Prosesnya hampir sama seperti yang terdapat pada penyelesaian SPLTV dengan metode eliminasi dan metode subtitusi.

Agar kalian lebih paham mengenai cara penyelesaian SPLTV dengan menggunakan gabungan atau campuran ini, berikut kami berikan beberapa contoh soal dan pembahasannya.


Contoh Soal


Soal 1.

Tentukan himpunan penyelesaian SPLTV di bawah ini dengan menggunakan metode subtitusi:
x – 2y + z = 6
3x + y – 2z = 4
7x – 6y – z = 10

Jawab:

Langkan pertama adalah menentukan terlebih dahulu persamaan yang paling sederhana.

Dari ketiga persamaan tersebut, persamaan pertama adalah yang paling sederhana. Dari persamaan pertama, nyatakan variabel x sebagai fungsi y dan z seperti berikut ini:

⇒ x – 2y + z = 6

⇒ x = 2y – z + 6

Subtitusikan variabel atau peubah x ke dalam persamaan kedua

⇒ 3x + y – 2z = 4

⇒ 3(2y – z + 6) + y – 2z = 4

⇒ 6y – 3z + 18 + y – 2z = 4

⇒ 7y – 5z + 18 = 4

⇒ 7y – 5z = 4 – 18

⇒ 7y – 5z = –14 …………… Pers. (1)

Subtitusikan variabel x ke dalam persamaan ketiga

⇒ 7x – 6y – z = 10

⇒ 7(2y – z + 6) – 6y – z = 10

⇒ 14y – 7z + 42 – 6y – z = 10

⇒ 8y – 8z + 42 = 10

⇒ 8y – 8z = 10 – 42

⇒ 8y – 8z = –32

⇒ y – z = –4 ……………… Pers. (2)

Persamaan (1) dan (2) membentuk SPLDV y serta z:
7y – 5z = –14
y – z = –4

Kemudian menyelesaikan SPLDV di atas dengan menggunakan metode subtitusi. Pilih salah satu persamaan yang paling sederhana. Pada hal ini persamaan kedua merupakan persamaan yang paling sederhana.

Dari persamaan kedua, maka kita dapatkan:

⇒ y – z = –4

⇒ y = z – 4

Subtitusikan peubah y ke dalam persamaan pertama

⇒ 7y – 5z = –14

⇒ 7(z – 4) – 5z = –14

⇒ 7z – 28 – 5z = –14

⇒ 2z = –14 + 28

⇒ 2z = 14

⇒ z = 14/2
⇒ z = 7

Subtitusikan nilai z = 7 ke salah satu SPLDV, sebagai contoh y – z = –4 sehingga akan kita dapatkan:

⇒ y – z = –4

⇒ y – 7 = –4

⇒ y = –4 + 7

⇒ y = 3

Lalu, subtitusikan nilai y = 3 dan z = 7 ke salah satu SPLTV, sebagai contoh x – 2y + z = 6 sehingga akan kita dapatkan:

⇒ x – 2y + z = 6

⇒ x – 2(3) + 7 = 6

⇒ x – 6 + 7 = 6

⇒ x + 1 = 6

⇒ x = 6 – 1

⇒ x = 5

Dengan begitu, kita dapatkan x = 5, y = 3 dan z = 7. Sehingga himpunan penyelesaian dari SPLTV soal tersebut yaitu {(5, 3, 7)}.
Supaya memastikan bahwa nilai x, y, dan z yang didapatkan sudah benar, maka kita bisa mengetahuinya dengan cara mensubtitusikan nilai x, y, dan z ke dalam tiga SPLTV di atas. Antara lain:

Persamaan I:

⇒ x – 2y + z = 6

⇒ 5 – 2(3) + 7 = 6

⇒ 5 – 6 + 7 = 6

⇒ 6 = 6 (benar)

Persamaan II:

⇒ 3x + y – 2z = 4

⇒ 3(5) + 3 – 2(7) = 4

⇒ 15 + 3 – 14 = 4

Baca Juga:  Integral Tak Tentu : Pengertian, Rumus, Sifat dan Contoh Soal

⇒ 4 = 4 (benar)

Persamaan III:

⇒ 7x – 6y – z = 10

⇒ 7(5) – 6(3) – 7 = 10

⇒ 35 – 18 – 7 = 10

⇒ 10 = 10 (benar)
Dari data di atas, maka dapat dipastikan bahwa nilai x, y dan z yang kita dapatkan telah benar serta telah memenuhi sistem persamaan linear tiga variabel yang ditanyakan.

Soal 2.

Di berikan sistem persamaan linear :

(i) x -3y +z =8

(ii) 2x =3y-z =1

(iii) 3x -2y -2z =7

Nilai x+y+z adalah

A.-1

B.  2

C.  3

D.  4

Pembahasan:

Dari persamaan (i) x – 3y + z = 8 → x = 3y – z + 8 …. (iv)

Substitusi persamaan (iv) ke persamaan (ii) :
2x + 3y – z = 1
2(3y – z + 8) + 3y – z = 1
6y – 2z + 16 + 3y – z = 1
9y – 3z + 16 = 1
3z = 9y + 15
z = 3y + 5 …. (v)

Substitusi persamaan (iv) ke persamaan (iii):
3x – 2y – 2z = 7
3(3y – z + 8) – 2y – 2z = 7
9y – 3z + 24 – 2y – 2z = 7
7y – 5z + 24 = 7
5z = 7y + 24 – 7
5z = 7y + 17 …. (vi)

Substitusi persamaan (v) ke persamaan (vi):
5z = 7y + 17
5(3y + 5) = 7y + 17
15y + 25 = 7y + 17
15 y – 7y = -25 + 17
8y = -8 → y = – 1 …. (vii)

Substitusi nilai y = – 1 pada persamaan (vi) untuk mendapat nilai z.
5z = 7y + 17
5z = 7( – 1) + 17
5z = – 7 + 17
5z = 10 → z = 2 … (viii)

Substitusi nilai y = – 1 dan z = 2 pada persamaan (i) untuk mendapat nilai x.
x – 3y + z = 8
x – 3(- 1) + 2 = 8
x + 3 + 2 = 8
x + 5 = 8
x = 8 – 5 → x = 3

Diperoleh nilai ketiga variabel yang memenuhi sistem persamaan yaitu x = 3, y = – 1, dan z = 2.

Sehingga, nilai x + y + z = 3 + (-1) + 2 = 4.

Jawaban: D

Diberikan Sistem Persamaan Linear

(i) = x – 3y +

Pembahasan:

Dari persamaan (i) x – 3y + z = 8 → x = 3y – z + 8 …. (iv)

Substitusi persamaan (iv) ke persamaan (ii) :
2x + 3y – z = 1
2(3y – z + 8) + 3y – z = 1
6y – 2z + 16 + 3y – z = 1
9y – 3z + 16 = 1
3z = 9y + 15
z = 3y + 5 …. (v)

Substitusi persamaan (iv) ke persamaan (iii):
3x – 2y – 2z = 7
3(3y – z + 8) – 2y – 2z = 7
9y – 3z + 24 – 2y – 2z = 7
7y – 5z + 24 = 7
5z = 7y + 24 – 7
5z = 7y + 17 …. (vi)

Substitusi persamaan (v) ke persamaan (vi):
5z = 7y + 17
5(3y + 5) = 7y + 17
15y + 25 = 7y + 17
15 y – 7y = -25 + 17
8y = -8 → y = – 1 …. (vii)

Substitusi nilai y = – 1 pada persamaan (vi) untuk mendapat nilai z.
5z = 7y + 17
5z = 7( – 1) + 17
5z = – 7 + 17
5z = 10 → z = 2 … (viii)

Substitusi nilai y = – 1 dan z = 2 pada persamaan (i) untuk mendapat nilai x.
x – 3y + z = 8
x – 3(- 1) + 2 = 8
x + 3 + 2 = 8
x + 5 = 8
x = 8 – 5 → x = 3

Diperoleh nilai ketiga variabel yang memenuhi sistem persamaan yaitu x = 3, y = – 1, dan z = 2.

Sehingga, nilai x + y + z = 3 + (-1) + 2 = 4.

Jawaban: D

Sistem Persamaan Linear Tiga Variabel : Ciri, Komponen, Metode Penyelesaian dan Contoh Soal

Soal 3.

Tentukan himpunan penyelesaian dari sistem persamaan linear tiga variabel di bawah ini dengan memakai metode gabungan.
x + 3y + 2z = 16
2x + 4y – 2z = 12
x + y + 4z = 20

Jawab:

Metode Subtitusi (SPLTV)

Langkah pertama menentukan persamaan yang paling sederhana. Dari ketiga persamaan di atas, dapat kita ketahui bahwa persamaan ketiga merupakan persamaan yang paling sederhana.

Dari persamaan ketiga, nyatakan variabel z sebagai fungsi y dan z seperti berikut ini:

⇒ x + y + 4z = 20

⇒ x = 20 – y – 4z ………… Pers. (1)

Lalu, subtitusikan persamaan (1) di atas ke dalam SPLTV yang pertama.

⇒ x + 3y + 2z = 16

⇒ (20 – y – 4z) + 3y + 2z = 16

⇒ 2y – 2z + 20 = 16

⇒ 2y – 2z = 16 – 20

⇒ 2y – 2z = –4

⇒ y – z = –2 …………. Pers. (2)

Kemudian, subtitusikan persamaan (1) di atas ke dalam SPLTV yang kedua.

⇒ 2x + 4y – 2z = 12

⇒ 2(20 – y – 4z) + 4y – 2z = 12

⇒ 40 – 2y – 8z + 4y – 2z = 12

⇒ 2y – 10z + 40 = 12

⇒ 2y – 10z = 12 – 40

⇒ 2y – 10z = –28 ………… Pers. (3)

Dari persamaan (2) serta persamaan (3) kita dapatkan SPLDV y dan z seperti berikut ini:
y – z = –2
2y – 10z = –28

Metode Eliminasi (SPLDV)

Untuk mengeliminasi atau menghilangkan y, maka kalikan SPLDV yang pertama dengan 2 supaya koefisien y kedua persamaan sama.

Berikutnya kita selisihkan kedua persamaan sehingga akan kita dapatkan nilai z seperti berikut ini:

y – z = -2 |×2| → 2y – 2z = -4

2y – 10z = -28 |×1| → 2y – 10z = -28
__________ –
8z = 24
z = 3

Untuk menghilangkan z, maka kalikan SPLDV yang pertama dengan 10 supaya koefisien z pada kedua persamaan sama.

Kemudian kita kurangkan kedua persamaan sehingga akan kita dapatkan nilai y seperti berikut ini:

y – z = -2 |×10| → 10y – 10z = -20

2y – 10z = -28 |×1| → 2y – 10z = -28
__________ –
8y = 8
z = 1

Hingga tahap ini, kita dapatkan nilai y = 1 dan z = 3.

Langkah yang terakhir yakni menentukan nilai x. Cara untuk menentukan nilai x yaitu dengan cara memasukkan nilai y dan z tersebut ke dalam salah satu SPLTV. Sebagai contoh x + 3y + 2z = 16 sehingga akan kita dapatkan:

⇒ x + 3y + 2z = 16

⇒ x + 3(1) + 2(3) = 16

⇒ x + 3 + 6 = 16

⇒ x + 9 = 16

⇒ x = 16 – 9

⇒ x = 7

Dengan begitu, maka kita dapatkan nilai x = 7, y = 1 dan z = 3 sehingga himpunan penyelesaian SPLTV dari soal di atas yaitu {(7, 1, 3)}.

Demikianlah ulasan dari Seputarpengetahuan.co.id tentang Sistem Persamaan Linear Tiga Variabel , semoga dapat menambah wawasan dan pengetahuan kalian. Terimakasih telah berkunjung dan jangan lupa untuk membaca artikel lainnya